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Abstract
Background  In a previous work, the problem of identifying residual stresses through relaxation methods was demonstrated to 
be mathematically ill-posed. In practice, it means that the solution process is affected by a bias-variance tradeoff, where some 
theoretically uncomputable bias has to be introduced in order to obtain a solution with a manageable signal-to-noise ratio.
Objective  As a consequence, an important question arises: how can the solution uncertainty be quantified if a part of it is 
inaccessible? Additional physical knowledge could—in theory—provide a characterization of bias, but this process is practi-
cally impossible with presently available techniques.
Methods  A brief review of biases in established methods is provided, showing that ruling them out would require a piece 
of knowledge that is never available in practice. Then, the concept of average stresses over a distance is introduced, and it is 
shown that finding them generates a well-posed problem. A numerical example illustrates the theoretical discussion
Results  Since finding average stresses is a well-posed problem, the bias-variance tradeoff disappears. The uncertainties of 
the results can be estimated with the usual methods, and exact confidence intervals can be obtained.
Conclusions  On a broader scope, we argue that residual stresses and relaxation methods expose the limits of the concept of 
point-wise stress values, which instead works almost flawlessly when a natural unstressed state can be assumed, as in clas-
sical continuum mechanics (for instance, in the theory of elasticity). As a consequence, we are forced to focus on the effects 
of stress rather than on its point-wise evaluation.
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Introduction

On Ill‑Posedness

Relaxation methods identify residual stresses from meas-
urements of the relaxed strains produced by cuts in a given 
specimen. In a previous work [1], it was shown that they 
are ill-posed problems. This property should not be con-
founded with that of being ill-conditioned. Many ill-posed 
problems are also ill-conditioned in practice, but the reverse 
is not implied. Ill-posed problems are often ill-conditioned 
precisely because of their ill-posedness. As a consequence, 

it is not a mistake to refer to relaxation methods as ill-condi-
tioned problems—they certainly are—though it would leave 
out an important piece of the story.

Avoiding its rigorous definition (the interested reader 
can find the details in [1]), ill-posedness means absence of 
continuity in the solving operator, that is, arbitrarily small 
changes in the inputs can lead to enormous changes in the 
outputs. In most practical cases, ill-posedness arises in the 
inversion of an integral operator. The latter typically works 
as a low-pass filter in the spatial domain, so its inversion 
behaves as a high-frequency amplifier with a gain factor that 
diverges as the input gets more oscillatory. Since each meas-
urement sample has some kind of independent error, inputs 
always include some white-like noise that spans the critical 
frequencies of the amplifier. As a result, the amplification 
factor through the inverse operator becomes high enough to 
completely dominate the solution.
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The key to understanding the peculiar features of ill-
posedness is that those big output changes can be produced 
by arbitrarily small input changes; in other words, no input 
accuracy can limit the maximum error that may affect the 
results. The intuitive explanation of continuity is that a func-
tion f(x) is continuous “when its graph can be drawn with-
out ever lifting the pen”. When a function is continuous, 
any desired uncertainty on the output value y = f (x) can be 
achieved by making sure that the uncertainty on the input 
value x is small enough. Again, the pen metaphor is instruc-
tive: if one cannot lift the pen, then an infinitesimal advance 
in x must produce only an infinitesimal advance in y. If the 
function is not continuous—for instance, if it has a jump at a 
point—even an infinitesimal change in the input can produce 
a finite change in the output. The concept of “error sensitiv-
ity” fails; roughly speaking, it is an infinite value. Stretching 
the concept into the multidimensional setting, if a operator 
is continuous, a perturbed output is sufficiently close to the 
ideal one when the input is close enough to its true value. 
When continuity is lost, that extremely beneficial property 
does not hold anymore.

To escape the absence of continuity and obtain a mean-
ingful solution, oscillatory noise has to be filtered out. Dis-
cretization—something that is actually required to numeri-
cally handle the problem —is a filter itself, as it bounds 
the number of degrees of freedom (DOFs) in the solution. 
Unless it is backed up by physical knowledge, discretization 
introduces a bias in the result; this bias is generally uncom-
putable. The rather trivial exception where the solution is 
known in advance is of little practical help.

As shown in [1]:

Proposition 1  Every practical solution of an ill-posed prob-
lem comes with an inherent bias-variance tradeoff, con-
trolled by the regularization level.

Note that the lack of continuity does not prevent the pos-
sibility of obtaining a meaningful solution of the relaxa-
tion methods. As a matter of fact, the map between relaxed 
strains and residual stresses is definitely well-understood, 
owing to the great works of the last decades [2–15]. If any-
thing, the process can be numerically cumbersome due to the 
number of FEM analyses needed and/or experimentally chal-
lenging due to the small strains that have to be measured, 
but a solution is seldom prevented by theoretical shortcom-
ings—at least with the established methods. Nonetheless, 
continuity is a fundamental property for the evaluation of 
the uncertainties that come with the solution.

The biggest concern pivots on uncertainty quantifica-
tion. Every experimental practitioner knows that inputs 
uncertainties can be propagated through the given model 
to obtain an estimate of the solution uncertainty. Regard-
less of the specific method used (mostly an explicit 

propagation of a covariance matrix or a Monte Carlo tech-
nique), a finite quantity is always reported for the obtained 
residual stresses, as every numerical implementation is 
implicitly regularized. Then, it is tempting to try to mini-
mize that value, as this would apparently signal a more 
accurate solution. The optimization of the uncertainty of 
results has been targeted in many previous works, not only 
by means of improvements of input data, but also (and 
quite specifically) through changes in the mathematical 
post-processing of the experimental measurements.

Unsurprisingly, the uncertainty seems to be optimized 
when the solution DOFs are kept low, an operation which 
includes low-pass filtering of input and/or output data—
that is, limiting DOFs in the frequency domain.

The problem lies in the fact that the uncertainty quan-
tification is inevitably applied to a biased linear operator 
that is not the original ill-posed one, as the latter actu-
ally yields solutions that are completely dominated by an 
infinite-variance noise. When the bias introduced by the 
discretization is not considered, the obtained uncertainty 
actually becomes an observation of the solution variability, 
leaving out a potentially huge and dominant part of the total 
uncertainty. Any regularization scheme (including a naive 
discretization) implicitly assumes that the solution has 
some very specific properties, which may not be present in 
the true solution. This bias can be arbitrarily high and can-
not be rigorously estimated without additional hypotheses 
(some exceptions are discussed later). Section “Uncertain 
Uncertainties” will expose some potentially dangerous and 
often counterintuitive consequences of this fact.

Considering the physical aspects of the problem, bias can 
be arbitrarily high only in theory, as residual stresses are obvi-
ously limited by the material strength properties—but, again, 
that is additional information with respect to the mathemati-
cal problem. Anyway, bias can eventually be high enough to 
completely change the results of a practical measurement.

For the sake of completeness, bias also affects well-
posed problems. For instance, the numerical implementa-
tion of a problem whose mathematical model is a definite 
integral (usually a continuous operator) is subject to a bias 
that depends on the specific quadrature scheme and is 
bounded by the properties of the input and its derivatives 
between the known (namely, measured) integration points, 
something that is obviously missing and that requires addi-
tional knowledge. The important difference with respect 
to ill-posed problems is that, as long as it is computation-
ally feasible, in that case the discretization scheme can be 
refined with a rational increase in DOFs at a level where 
bias is clearly negligible without compromising on vari-
ance. On the contrary, when facing ill-posed problems the 
best strategy is not to merely increase the DOFs, but to 
look for a balance. As a consequence, bias could even end 
up being higher in magnitude than the observed variance.
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Motivation

This paper tries to answer the following questions: 

1.	 If uncertainty is potentially infinite in the general case, 
what does one actually obtain when an uncertainty quan-
tification technique is applied?

2.	 What are the hypotheses to which the validity of the 
uncertainties obtained through most common strategies 
is conditioned?

3.	 Is there a minimal set of assumptions that allow one 
to obtain more reliable uncertainty bounds for a given 
practical problem?

4.	 How should results and their uncertainty bounds be 
effectively communicated?

Regarding point 3, we will demonstrate that by giving up 
the pursuit of point-wise stress values—elusive even from a 
theoretical standpoint—a well-posed problem is obtained, 
to which conventional uncertainty quantification techniques 
can be rigorously applied without introducing any danger-
ous bias. It is here anticipated that no refined mathematical 
machinery can overcome an inherent and substantial limit 
of the underlying model. On the contrary, many advanced 
techniques turn out to be quite dangerous when applied to 
ill-posed problems, as their complexity hinders the clarity 
of their assumptions.

The discussion of the following sections is related to 
inverse problems arising from residual stress measurements 
with relaxation methods, whose general mathematical form 
is as follows:

where h denotes the cut length and z is used as a spatial 
coordinate. A(h, z) has been called the influence function, 
calibration function or kernel of the problem and depends 
on constitutive properties of the material, on the geometry of 
the specimen and on that of the cut. Note that the notations 
A(h, z) or A(z, h) are equivalent in practice.

It must be added that the same considerations hold for 
all problems described by equation (1), including but not 
limited to cases where differentiation of a measured quantity 
is needed. For example, equation (1) includes the formula-
tion of the residual stress identification problem in terms of 
eigenstrains [16].

This matter is anything but mathematical sophistry. Ill-
posed problems are rooted in functional analysis, and many 
of their defining properties are quite difficult to grasp with-
out some background in the subject. However, their practical 
applicability is mostly an engineering matter. Simply speak-
ing, math demonstrates that the problem is not continuous 

(1)�(h) = ∫
h

0

A(h, z) �(z) dz

and that the total uncertainty cannot be estimated, unless 
something else is known or assumed. It all comes down to 
know something that mathematics alone does not know, and 
that is an application-specific piece of knowledge.

That is why, in terms of pure solution accuracy, expe-
rienced residual stress practitioners are probably already 
near-optimal, precisely because (even without a rigorous 
way to frame the problem) they use their personal engineer-
ing judgment to handle the bias-variance tradeoff and choose 
a rational (if not optimal) solution for their application. On 
the other hand, we think that there is room for improving the 
quantification of uncertainties: we are often quite puzzled by 
reproducibility tests where 95% confidence intervals consist-
ently don’t match among different experiments.

Probably the main point of this work goes against chas-
ing elusive targets that can be proved to be uncomputable in 
the general case, so that research efforts can be effectively 
directed to things that can actually be improved in the pre-
sent state of the art. Just to mention one of them, the huge 
quantity of input data provided by full-field methods is very 
promising [17–20], yet the framework used to process them 
is still rather tied to the usual strain gauge formalism; some 
interesting ideas have been discussed in [21, 22].

The paper is organized as follows:

•	 In Section “Continuum Bodies and Point-Wise Val-
ues”, the discussion is introduced by analyzing the basic 
problem of measuring density throughout a solid; this 
fundamental and scalar property is unrelated to residual 
stresses, but the discussion serves to highlight general 
considerations.

•	 In Section “Preliminaries”, the well-established instru-
ments that allow one to obtain the solution of the residual 
stress inverse problem are briefly recalled. Additionally, 
a numerical reference problem is presented, to be paired 
with the theoretical discussions.

•	 In Section “Uncertain Uncertainties”, the hidden biases 
of the solution process are discussed by using well-
established techniques as examples. The main focus is 
not on the discretization error caused by finite DOFs, but 
rather on the other deceptive biases that impair a reli-
able uncertainty quantification. A fundamental question 
is raised: what is the point of reporting an uncertainty 
value that is, in turn, highly uncertain?

•	 In Section “A Constructive Proposal”, the findings of 
the previous Section are used to constructively build 
a proposal that is aimed at minimizing the amount of 
uncomputable biases, thereby yielding a more reliable 
uncertainty quantification.

As stated in [1], whose this paper is the continuation, this 
discussion is not by any means a collection of arguments 
against the use of relaxation methods. Other ones are way 
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more susceptible to the material structure at the micro-scale, 
so a comprehensive evaluation of their uncertainty is possi-
bly even more difficult than the present case. Again, the aim 
of this paper is to provide guidance on how to best squeeze 
out reliable information from experimental results.

Continuum Bodies and Point‑Wise Values

The Density of a Mysterious Solid

There exists a much more graspable physical analogue to the 
ill-posedness of relaxation methods (see Fig. 1). Assume that 
a company has realized a solid of given shape in a newly-
engineered graded material where the density is made vari-
able across the body. To verify the accuracy of the manufac-
turing process, the solid is given to an external lab, asking 
for a characterization of the mass density field—namely, the 
evaluation of the mass density as a function of the position 
in the solid, defined point-by-point. Nothing else is told to 
the laboratory, aiming at a truly blind verification.

First of all, laboratory technicians measure mass and vol-
ume of the whole specimen. By dividing those two quan-
tities, the average density of the whole body is obtained. 
If the specimen material was known to be homogeneous, 
the experiment would stop here. Since no assumption can 
be made, more measurements are needed. The specimen is 
carefully cut into small sub-components, say, of approxi-
mately a hundredth of the initial size, whose masses, vol-
umes, and original locations in the specimen are recorded. 
This process yields the average density of each piece. Alto-
gether, the target density function is known through a map 
of its averaged values on some subsets of its domain.

The laboratory head may question whether the achieved 
resolution is enough for the customer’s needs and demands 
to increase the number of parts. Each sub-component is 
further divided into smaller sub-sub-components, whose 
average density is measured through mass and volume 
measurements. The process starts becoming quite challeng-
ing: the absolute precision of the laboratory instruments 
turns out to be quite poor in relative terms for these very 
tiny pieces. Moreover, the cut width stops being negligi-
ble. Anyway, by taking the uncertainties of the laboratory 
instruments into account, one can propagate them into 
uncertainty values of the obtained averaged densities. The 
smaller the parts, the more those densities are affected by 
high relative uncertainties, so at some point one must stop 
cutting, for example when the uncertainties on average den-
sities exceed a certain threshold.

Regardless of the number of cut iterations, what is 
obtained is always a map of average densities over some 
given volumes. Here comes the main problem: are the point-
wise values of the target density function constrained to fall 
within the obtained uncertainties? Without further assump-
tions (as in the present case), absolutely not. Indeed, a coun-
terexample is trivial: each average density could arise from 
a few small but massive particles embedded in an almost 
vanishing matrix. There is no upper bound to the absolute 
error that could be made: as long as the massive particles are 
sufficiently small, their point-like density could be arbitrar-
ily high. Ironically, that is actually the case.

At the atomic scale, matter is essentially a collection of 
tiny supermassive particles—nuclei—whose average den-
sity is in the order of 1017 kg∕m3 , embedded in low-density 
regions, which are filled only by electronic orbitals. At 
higher length scales, those two densities average out into 

Fig. 1   (a) A mysterious solid whose unknown variable density is to be mapped throughout its volume. (b) To this aim, the solid is divided into 
smaller pieces, whose masses, volumes, and original locations in the specimen are recorded. The cutting scheme is arbitrary, but it profoundly 
affects the physical nature of the obtained result. By dividing the mass of a tiny piece by its volume, its average density is obtained. Unless some 
additional knowledge is available for assuming that a point-by-point evaluation of density is negligibly varying inside each small piece, nothing 
can be further inferred
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the commonly known and used material density, which is 
fine for many practical applications.

The mathematical structure of this problem is akin to 
the one of relaxation methods. From a given density func-
tion �(x) , the mass m of a solid Ω can be obtained as:

which is the simplest form of equation (1), obtained by set-
ting a 3D unit function as kernel. One measures m(Ω) , char-
acterizes Ω , and tries to identify �(x) . In other words, one 
wants to find a function through the results of some integrals 
over appropriate domains. Needless to say, this problem can 
be shown to be mathematically ill-posed.

What is literally ill-posed—even from a conceptual point of 
view—is the question itself. What is actually a point-wise mass 
density? Electrons do not occupy fixed positions in space, while 
thermal energy is stored in the vibrational motion of atoms in 
the crystal lattice, so strictly speaking density should be also a 
function of time. The point here is that density is almost always 
desired in its continuum mechanics definition, rather than in 
its strictly point-like value, and the two are substantially dif-
ferent. In fact, the first assumes that there exists an averaging 
volume that is sufficiently small for the averaged quantity to 
be considered practically point-wise, but sufficiently large to 
contain enough atoms so that density fluctuations due to indi-
vidual motions can be neglected. The resulting averaged density 
becomes a function of spatial position only. The mass densities 
of materials, used in common engineering practice, fall within 
this definition, which—despite being openly artificial and miss-
ing the physical reality—serves as a valuable practical quan-
tity. In fact, one can effectively use it to determine the mass of 
solids of any given shape through equation (2), provided that 
they are larger than the averaging volume; all while forgetting 
the discrete nature of matter and exploiting the advantages of 
calculus. In other words, we are trading a bit of physical rigor 
for invaluable practical convenience.

When trying to measure density in a mechanical component, 
finding a suitable averaging volume is not a particularly dif-
ficult task. For example, a 1�m3 cube of iron contains about 
1011 atoms, while being definitely small for most applications 
in mechanical engineering. If the laboratory was able to provide 
the company with a characterization of the mass density aver-
aged on 1�m3 cubes, it is quite safe to say that all its practical 
needs would be satisfied. Note that this piece of information 
is just a reasonable bet, but it is not implied in any way by the 
properties of the problem. It is an assumption, not a deduction.

To sum up, the laboratory faces two issues when solv-
ing a problem like this one:

•	 A theoretical issue. The solution of the problem equation 
looks for a point-wise quantity that actually does not exist 

(2)m(Ω) = ∫∫∫Ω

�(x) dV

or has significant conceptual shortcomings. Nonetheless, 
in many practical cases the point-wise values are not even 
needed. Density always presents itself inside integrals 
that yield measurable quantities (e.g., masses or moments 
of inertia). We are interested in predicting the results of 
those integrals, not in the mass density itself. Hence, 
why bother about the values and the (infinitely large) 
uncertainties of the point-wise density? All we need is 
an averaging volume that is small enough not to influ-
ence the results of integrals of the mass density, such as 
a refined discretization scheme.

•	 A technological/metrological issue. For a fixed abso-
lute error of the measuring instruments, smaller averag-
ing volumes imply higher relative errors in the results. 
Clearly, results have a practical relevance if their uncer-
tainties fall below a certain threshold, so the accuracy 
of the available instruments set some limitations on the 
minimum achievable averaging volume, which may be 
significantly larger than the one that would overcome the 
previous issue.

Eventually, the problem is solved if three conditions are met: 

1.	 there exists an averaging volume that is large enough to 
exclude the influence of matter discreteness;

2.	 that volume is small enough to capture any spatially 
localized effect of the measured quantity that may affect 
the result being evaluated—usually an integral value 
such as mass;

3.	 the accuracy of the available instruments allows one to 
obtain those integral values with reasonable uncertainties.

When at least one of these conditions is not met, the prob-
lem is unsolvable. Note that solvability is a user-dependent 
property and not an absolute one: the same unsolvable mass 
density measurement of a given material might be solvable 
(using the same instruments) for someone that will produce 
bigger parts out of that material, because the negligible 
influence of density variations at lower scales would allow 
a bigger averaging volume to be chosen. In our example, a 
1�m3 averaging volume would miserably fail the needs of 
the customer if the solid is made out of a nano-architected 
material whose density is intentionally designed to vary at 
the nm scale.

Ill-posedness is often caused by the theoretical issue 
and appears through the technological issue, as a coupling 
between the requirements set by conditions 2 and 3. In well-
posed problems, the two requirements can be solved almost 
independently. In those cases, discretization schemes only 
marginally affect the sensitivity of results to the measure-
ment uncertainties; measuring function values at more 
points with a given absolute precision does not decrease the 
overall precision in knowing the whole function. In ill-posed 
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problems, the two requirements are instead coupled and 
define the bias-variance tradeoff [1].

Back to Residual Stresses

Let us apply the obtained results to residual stresses and 
relaxation methods. Again, what is a point-wise value of 
stress? If the whole problem of relaxation methods was 
reformulated in terms of inter-atomic forces, it would be 
well-posed—it has an extremely high number of degrees of 
freedom, though not an infinite one. Clearly, this approach 
is completely out of reach and probably more trouble than 
it is worth, so inter-atomic forces are averaged into the con-
tinuum mechanics formalism, which only works at some 
intermediate length scale.

By some manner, we are spoiled by the well-posedness of 
classical elasticity. In the ideal world of continuous homo-
geneous elastic solids, when suitable boundary conditions 
are applied, a unique solution in terms of point-wise stress 
fields is guaranteed and that solution is stable with respect to 
input variations. The boundary problem of classical elastic-
ity is well-posed because of (not solely, of course) a rather 
strong mathematical assumption: a compatible natural state 
exists, in which the point-wise stress and strain fields are 
null throughout the body with no forces or displacements 
applied. When that holds, finding point-wise values of 
stresses and strains from suitable boundary conditions is a 
well-posed problem. Moreover, because of Saint Venant’s 
principle, boundary loads tend to produce regular stress 
and strain fields far from their application point, so that we 
consider regularity as a natural property of the stress field. 
Unfortunately, the above assumption must be dropped when 
considering residual stresses, because often it is the oppo-
site of what actually generates them. Indeed, the latter are 
produced by incompatible permanent strain fields that aren’t 
necessarily regular (in terms of continuity or differentiabil-
ity), and there are myriads of them that correspond to almost 
identical boundary conditions for the whole body. Even a 
simple prismatic bar under a single axial load could present 
an extremely intricate solution that satisfies compatibility 
and equilibrium, if the initial strain fields are not forced to 
be null.

Nonetheless, only integral effects of point-wise stresses 
can be observed and measured. We can measure forces, 
displacements, deformations of a given gauge length, 
etc., all of which depend on surface or volume integrals 
of the point-wise stress fields. Many failure criteria are 
defined—arguably for convenience—on point-wise values 
of stresses but are already known to cause some problems 
in relevant practical cases such as sharp notches, and most 
workarounds rely on switching to related integral quantities 
such as strain energy release rates [23], the Line Method 
in the Theory of Critical Distances [24], the Averaged 

Strain Energy Density criterion [25], etc. If it is not a bit 
of a stretch, we claim that stress in a continuum is a useful 
bridge quantity between other measurable quantities that 
depend on stress integrals over some finite spatial domain.

This is the same condition discussed in the mass density 
experiment, where it is necessary to give up on the evanes-
cent concept of point-wise values of some intensive quantity 
and to settle for an averaged version that is refined enough to 
compute the desired integrals. Nonetheless, the theoretical 
and technological issues are arguably much more challeng-
ing than in the density problem, as the stress is a tensor and 
the averaging size that satisfies both requirements is likely 
to be confined in a very narrow interval.

Note that the very nature of relaxation methods forces 
some features of the averaging process. For instance, in the 
hole-drilling method, residual stresses are averaged over 
cylindrical surfaces with fixed diameter; for the slitting 
method, residual stresses are averaged over planar surfaces 
of given length; and so on. Except for the contour method, 
whose averaging surface could be freely chosen, in principle, 
other methods allow one to change the averaging size only 
over a single dimension. Regarding other directions, the bias 
introduced by the averaging size is simply inevitable and 
not measurable, requiring careful evaluation by the stress 
analyst. For instance, if stress fields exhibit fine patterns on 
the plane where the hole is drilled, nothing in the experiment 
can account for it, nor can it estimate the error we introduce 
by assuming a constant averaged value on the plane. It is 
important to remember that the assumption of constancy 
in the averaging dimensions imposed by the measurement 
process itself must be supported by other information and 
cannot be confirmed retrospectively.

As long as we want to avoid the effects of crystal grain 
discreteness and orientation, we are forced to average 
point-wise stresses over a significant number of grains. 
Then, at the very least, the averaging length is bounded 
below by the grain size. For a typical structural steel, that 
would be around 10�m [26, 27]. It is worth noting that this 
limit changes drastically if the measurement is capable of 
analyzing residual stresses within a grain, while accurately 
modeling its specific anisotropy in space—that is the case 
with FIB-DIC measurements [28]; at that point, the lower 
limit is likely to become the breakdown of the continuum 
body assumption.

The averaging length is also limited from above by the 
requirements set by integrals that must be computed to evalu-
ate some material performances of interest, and the problem 
becomes extremely application-specific: the following discus-
sion should be raised before every residual stress measurement.

By trying to provide a typical example, it is reasonable to 
assume that residual stresses are often characterized because 
of their significance for structural integrity. The character-
istic length used by common fatigue or fracture criteria is 



Experimental Mechanics	

generally in the order of 100�m for structural steels [24]. 
Then, the average residual stress fields over that length 
become the actual target of the measurement process.

Eventually, there remains the technological/metrological 
issue. The current state of the art is definitely not too far 
from the theoretical target—at least in this proposed exam-
ple. A spatial resolution of 100�m is not a tough request for 
a hole-drilling measurement at the present state of the art; 
for a slitting measurement it is much more of a challenge, 
although an impressive recent work proves that it is possible 
[29]. However, we are not simply interested in the average 
residual stresses over that length, since the whole point of 
this paper is to dig into their uncertainties. This fact sets 
additional requirements.

As shown in Section “Uncertain Uncertainties”, if one 
uses the Integral Method and a 100�m step, the actual aver-
aged solution over 100�m steps is not achieved; instead, 
a biased result is obtained. The same applies to Tikhonov 
regularization. We should not rely on any of the methods 
that introduce uncomputable biases—in the sense that the 
true solution is needed to compute them. When solving ill-
posed problems, obtaining results is deceptively much easier 
than computing their uncertainties.

A brief side point: as repeatedly remarked in [1], if some 
physical knowledge suggests that the solution has a specific 
form depending on few parameters, no bias is introduced at 
all when the problem is solved with respect to those param-
eters, so this whole discussion becomes pointless.

Preliminaries

A Reference Example

As done in [1], the discussion is aided by a reference 
example of an ideal and known but realistic residual stress 
distribution, hypothetically produced by a shot peen-
ing treatment on a thick steel component (E = 206GPa, 
� = 0.3) . The chosen residual stress distribution is 
inspired by the classic textbook of Schulze on shot peen-
ing [30]. Expressing the in-depth coordinate z in mm and 
�(z) in MPa , the following expression was assumed (plot-
ted in Fig. 2):

For simplicity, having assumed a sufficiently thick speci-
men, tensile residual stresses for z > 0.25mm are neglected. 
In accordance with the ASTM E837 procedure [31] the 
relaxed strains measured by a standard type-A strain rosette 
with diameter D = 5.13mm were numerically calculated by 
assuming a hole with diameter D0 = 2.05mm . The corre-
sponding influence function was taken from [32].

(3)𝜎(z) =

{
−500 cos

[
𝜋

4
(12z − 1)

]
z ≤ 0.25

0 z > 0.25

To simulate the typical measurement in state-of-the-
art conditions, 100 strain samples were generated, corre-
sponding to a constant drilling step of 10�m . When meas-
urement errors in relaxed strains had to be considered, a 
Gaussian noise having a standard deviation of �� = 1�� 
was superimposed on the calculated relaxed strain. A 
Monte Carlo simulation with 104 trials were employed to 
evaluate the corresponding distributions of results.

Besides its illustrative functions, a toy problem like this 
one has a much more fundamental purpose. The problem 
with residual stress measurements is that each method 
is kind of specialized in measuring residual stresses at 
a given length scale and for a range of depths from the 
specimen surface—see the useful chart in the first chapter 
of [14]. A reference laboratory measurement where most 
uncertainties are minimized to a negligible level (com-
pared to practical applications) is arguably still missing. 
As a consequence, uncertainty quantification techniques 
are almost unverifiable: how can we be sure that a con-
fidence interval evaluation strategy works, if true values 
cannot be obtained with a significantly higher accuracy? If 
two techniques yield different values, which one is wrong?

On the other hand, any proposed uncertainty quantifi-
cation strategy must work at least in a controlled numeri-
cal setting, and here is where the toy problem comes in 
handy. It cannot prove that an uncertainty quantification 
works—the real world can always show errors that were 
not included in our computations—but it can effectively 
disprove it.

Degrees of Freedom cannot be Infinite

Ill-posedness manifests itself in a very subtle way. In prac-
tice, only a finite collection of relaxed strain readings is 
available; as a consequence, at most, the same number of 

Fig. 2   Equi-biaxial residual stress distribution used as an ideal exam-
ple to be paired with theoretical discussions
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DOFs can be assumed to represent the residual stress distri-
butions. When the DOFs are made finite, the integral equa-
tion in equation (1) becomes a linear system and the operator 
is reduced to a suitable matrix.

A matrix is a representation of a linear finite-dimensional 
continuous operator: it sends infinitesimal inputs to infini-
tesimal outputs. Besides rigorous proofs, it can be directly 
verified by mere calculations. More interestingly, an input 
uncertainty cannot be amplified by the linear operator more 
than the maximum singular value of the matrix [33]. Did this 
fact overcome ill-posedness? Unfortunately no, even though 
the last fact is true.

What one observes is a bounded sensitivity of the finite-
DOFs residual stress solution with respect to the input error. 
Unfortunately, the solution may have arbitrarily high fre-
quency contents outside those specific DOFs that were con-
sidered in the calculations. Just to give the idea, the residual 
stress solution could present extremely high oscillations inside 
a given discretization step, as long as the integral in equation 
(1) yields the same relaxed strain values. In mathematical 
terms, discretization is itself a regularization technique. That 
is why it is often important to choose a basis for the residual 
stress functions which suitably represent a given experimental 
case—but that is engineering knowledge, not maths.

One may give up on the possibility to attain the true 
point-wise residual stress function and settle for its best 
approximation (in a least squares sense) in the chosen finite-
dimensional space. For example, when the well-known Inte-
gral Method [5–7] is used, the results become the averaged 
residual stress along the given calculation intervals. Surpris-
ingly, the following proposition holds, as shown in Section 
“Uncertain Uncertainties”:

Proposition 2  In general, a least squares approximation in 
the space of relaxed strains is not a least squares approxi-
mation in the space of residual stresses.

As a consequence, not only the obtained least squared 
solution could be arbitrarily far from the true one, it is not 
even the best one among the members of the chosen discre-
tization scheme. In other words, the solution is also biased 
with respect to the element that best represents the true 
residual stress fields in terms of least-squares distance.

This last sentence is counter-intuitive and deserves an addi-
tional ideal reference example. Let us consider a thick speci-
men with an equi-biaxial residual stress distribution, assumed 
to be known with infinite accuracy, and a hole-drilling meas-
urement performed in—say—ten equal steps. The relaxed 
strains are measured with no errors, too. The setup is so pre-
cise that the experiment could be repeated in any point of the 
specimen and the same relaxed strains are obtained. When the 
inverse problem is solved by the Integral Method, the same 
ten residual stress values are obtained for any hole. Given 

the accuracy of the setup, it is reasonable to expect that the 
obtained residual stress values are the average of the real stress 
distribution along each calculation step: in general, they are 
not. From a practical point of view, the solution obtained with 
the Integral Method is not an unbiased estimator of the average 
residual stresses in each interval. It is not at all a specific limit 
of the Integral Method; it is an inherent limit of equation (1).

Nonetheless, every bias vanishes as the discretization 
scheme is pushed to a high number of degrees of freedom. 
As that happens, the discretized operator better resembles 
the original (discontinuous) operator, and this fact manifests 
itself as an increase of the solution sensitivity to input errors 
towards unmanageable values, until the solution is practi-
cally dominated by noise. A trade-off between bias and vari-
ance becomes necessary; when it is not explicitly chosen, a 
hidden bias is inevitably being introduced.

Practical Solution

To solve equation (1), the residual stress is assumed 
to belong to the span of a n-dimensional basis 
� =

[
�1(z), �2(z)… �n(z)

]
 , while relaxed strains are sampled 

at a finite number of hole depths h =
[
h1, h2 … hm

]
 . Linear-

ity is exploited to evaluate the effect of every component of 
the residual stress basis to each relaxed strain measurement:

so that, for a given residual stress distribution 
�(z) =

∑n

j=1
sj�j(z) , the following relation holds:

By defining an array of measured strain samples 
e =

[
�(h1), �(h2)… �(hm)

]
 and another array of resid-

ual stress components with respect to the chosen basis 
s =

[
s1, s2 … sn

]
 , the usual linear system is obtained:

Depending on the specific choice of the basis � and on the solu-
tion strategy of equation (6), several approaches have been pro-
posed to solve this inverse problem. The hidden biases introduced 
by those procedures are discussed in the following section.

(4)Aij = ∫
hi

0

A(h, z) �j(z) dz

(5)

�(hi) = ∫
hi

0

A(h, z) �(z) dz

= ∫
hi

0

A(h, z)

n∑
j=1

sj�j(z)

=

n∑
j=1

sj ∫
hi

0

A(h, z) �j(z)

=

n∑
j=1

Aijsj

(6)As = e
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Uncertain Uncertainties

Integral Method

The celebrated Integral Method [5–7] assumes that the resid-
ual stress distribution is a piecewise constant function (also 
known as staircase function). In mathematical terms, the 
interval 

[
0, hmax

]
 is divided into a finite number of subinter-

vals Hj ≜ [
hj−1, hj

]
 , and their related indicator functions 

�Hj
(z) are used as a basis. Recall that �Hj

(z) is defined as:

The coordinates sj of �(z) with respect to that basis are the 
piecewise constant values of stresses in the chosen subinter-
vals. The solution is obtained as:

Apart from the rather unreasonable case of knowing that �(z) 
actually is a staircase function, there exists a representation 
error �⟂(z) such that:

By plugging equation (9) into equation (1), for a given 
relaxed strain sample ei one gets:

There is no guarantee that the second term at right-hand 
side is null. Depending on the specific hi , it could be either 
positive or negative, randomly perturbing the linear system.

Eventually, the coefficients sj are found by inverting equa-
tion (6), but that is not the true model of physical reality, 
which is actually found in equation (10). A slightly wrong 
model is used both to find the solution and to compute its 
uncertainties. It is worth noting that this error is added to 
the representation error. Equation (9) already indicates that 
the best solution would anyway miss the component �⟂(z) . 
Additionally, the values of sj are biased by a wrong inver-
sion model. The correct one depends on �⟂(z) and it is not 
accessible to the analyzer. This happens even if the input 
data is unaffected by any kind of error. In practice, even with 
perfect measurements, the results would not correspond to 

(7)�Hj
(z) ≜

{
1 if z ∈ Hj

0, if z ∉ Hj

(8)sj =
1

hj − hj−1 ∫Hj

�(z) dz

(9)�(z) =

n∑
j=1

sj�Hj
(z) + �⟂(z)

(10)

ei = ∫
hi

0

A(h, z) �(z) dz

= ∫
hi

0

A(h, z)

n∑
j=1

sj�Hj
(z) + ∫

hi

0

A(h, z) �⟂(z) dz

=

n∑
j=1

Aijsj + ∫
hi

0

A(h, z) �⟂(z) dz

the average values of �(z) over the subintervals Hj . The only 
way to reasonably avoid this bias is to include the highest 
number of DOFs, so that �⟂(z) can be deemed as physically 
negligible (this point is articulated in Section “A Construc-
tive Proposal”). See Fig. 3 for a numerical example.

Another bias impairs the inversion process. When the 
regularization level is controlled by the size of the subinter-
vals Hj , the resulting DOFs are almost always less than the 
measurement points—that is, the matrix A is rectangular and 
has more rows than columns. The linear system in equation 
(6) becomes overdetermined, and s is evaluated in a least-
squares sense.

Least-squares solutions of discrete inverse problems 
come with a fairly overlooked subtlety: the residuals are 
minimized in the only space where that operation is possi-
ble, which is the space of the measured relaxed strains. The 
least-squares solution s† is the one that best approximates e 
in terms of relaxed strains. In geometrical terms, it is the one 
such that As† is the orthogonal projection of e on the span of 
possible relaxed strains.

Unfortunately, the fact that As† is the best approxima-
tion of e does not imply that s† is the best approximation 
of the real �(z) , as that is hardly ever the case. In formal 
terms, the operator does not preserve orthogonality so, in 
general, an orthogonal projection in the space of measured 
relaxed strains is not an orthogonal projection in the space 
of residual stresses. As a consequence, not only the solution 

Fig. 3   Solutions obtained through the classic Integral Method. To 
achieve a reasonable output variance while avoiding additional reg-
ularization, the domain is divided into 10 subintervals, each having 
a 100�m depth. The yellow solution corresponds to ideal errorless 
measurements and coincides with the expected value of experimental 
solutions (in blue), while the shading shows the corresponding ±2� 
scatter band. Confidence intervals would have the same size, although 
they would be centered on a specific experimental solution. The 
actual average of the true solution inside each subinterval is shown in 
red. The red and the yellow curve do not correspond. In some subin-
tervals, the actual average is even outside the ±2� results band
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is affected by discretization error, it is not even the best one 
among those spanned by the chosen basis too.

When a technique for uncertainty quantification is 
applied to the usual linear system in equation (6), it is com-
monly assumed that a correct model of the physical reality 
is available. Then, the uncertainties of its constituents can be 
included. Uncertainties on relaxed strains can be considered 
in e ; all kinds of geometrical and constitutive uncertainties, 
in particular those on the cut depth measurements, can be 
included in A ; but the fact that equation (6) is not the true 
model of the physical process cannot be rigorously consid-
ered, since its associated error—exposed in equation (10)—
depends on the unknown true value of the solution.

Eventually, the statistical distribution of s can be com-
pletely characterized but it is not possible to know where 
it is positioned with respect to the values of �(z) , neither 
to their averages over the calculation intervals, unless—as 
anticipated—some physical knowledge can rule out bias. 
Moreover, as a consequence of the bias-variance tradeoff, by 
varying the bias the variance of the solution actually changes 
and would give rise to different total uncertainties under the 
same estimation framework.

How can uncertainties be trusted, if they are themselves 
highly uncertain? A, say, 95% confidence interval on sj is 
interpreted as a region in which the ideal values of sj—
namely, obtained with errorless input data— are included 
with a 95% probability. Nonetheless, the physical signifi-
cance of being just an ideal result is rather questionable, as 
those ideal values are biased by an unknown quantity with 
respect to the actual average values of �(z) over the subin-
tervals Hj , which are instead quantities tied to the physical 
reality. The 95% coverage holds only for those ideal values 
but not for the averages of �(z) , let alone for the point-like 
values of �(z).

Power Series Method

Instead of indicator functions, a set of polynomials could be 
assumed as the basis � that spans the space of admissible 
solutions:

Equation (11) defines the so-called Power Series Method, 
which was also explored in Schajer’s pioneering paper [5].

All the biases discussed in the previous section still 
hold, though possibly in an even more underhand manner. 
The solutions of the Power Series Method sj are not estima-
tors of spatially averaged residual stress values; instead, 
they are the coefficients of a polynomial—each having 
a different dimension and measurement unit. As for the 
integral method, the observed variance only concerns the 

(11)�(z) =

n∑
j=1

sjz
j−1

variability of the sj ’s with respect to their ideal errorless 
values. Nonetheless, the latter have a rather limited physi-
cal meaning: the, say, fifth coefficient itself of a polyno-
mial stress distribution has hardly ever a direct influence 
on the structural behavior.

As a consequence, the uncertainties of coefficients are 
frequently combined to obtain the point-like stress uncer-
tainties, which are instead inherently biased by the fact 
that, in practice, a truncated polynomial expansion never 
represents exactly the true solution; in other words, there 
always exists a �⟂(z) component as in equation (10). See 
Fig. 4 for a numerical example. In fact, no one can have 
a prior knowledge that a residual stress distribution is a 
polynomial function. There’s only a remarkable exception, 
which holds whenever the residual stress is known to have 
at most a linear trend. If a slender beam-like component is 
only subjected to far-field incompatibilities, as in the clas-
sical case of a straight beam in a two-dimensional statically 
indeterminate structure, then Navier’s formula holds, and 
residual stresses are described by a first-order polynomial. 
Note that in this favorable case the problem is well-posed 
and probably also sufficiently conditioned, so it is far form 
the “traps” of ill-posedness.

As a side note, it can be observed that a residual stress 
distribution could be considered better approximated by a 

Fig. 4   Solutions obtained through the Power Series Method and a 
Legendre polynomial basis. To achieve a reasonable output vari-
ance without additional regularization, sixth-order polynomials are 
employed. The yellow solution corresponds to ideal errorless meas-
urements and coincides with the expected value of experimental 
solutions (in blue), while the shading shows the corresponding ±2� 
dispersion. Confidence intervals would have the same size, although 
they would be centered on a specific experimental solution. The can-
didate that best approximates the true solution in a least-squares sense 
is reported in red. The red and the yellow curve do not correspond. 
The red curve is frequently outside the ±2� results dispersion. Since 
the physical meaning of the red curve is definitely questionable, one 
may be tempted to compare the obtained solution with the true one 
itself, but the situation is even worse
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polynomial than by a staircase function, at least in compo-
nents made by a homogeneous material. The discontinuities 
of a staircase distribution would require the process that gen-
erated residual stresses to produce an intricate distribution 
of eigenstrains, which is not realistic for common manufac-
turing processes. Therefore, the disadvantages of the Power 
Series Method could be slightly compensated by the fact 
that �⟂(z) is likely smaller than the one found with the Inte-
gral Method for a given number of DOFs. Nonetheless, this 
fact breaks down as soon as the residual stresses show high 
gradients that are better modeled by a discontinuity than by 
a smooth function.

The application of the Power Series Method exposes the 
core problem of ill-posedness: how many polynomial terms 
should be included? If too few are employed, the solution is 
very robust to input noise but highly biased; if too many are 
included, the contrary holds. Again, bias is not observable, 
so making this choice by evaluating the solution variance 
would actually demand a constant function—namely, a zero-
order polynomial—to be used.

To the authors’ best knowledge, Prime and Hill were 
the first to acknowledge this effect in a now well-known 
paper [34], where they made clear the distinction between 
a “measurement uncertainty” and a “model uncertainty”, 
that is, respectively, variance and bias. They also proposed 
a heuristic method to evaluate the latter, which, despite not 
having a proven general validity, certainly raised awareness 
on the topic (see the recent works by Olson et al. [35, 36], 
where they call it “regularization uncertainty”), in addition 
to providing good results in many practical cases.

Smit and Reid [37–39] proposed another heuristic: the 
best order is the one with the lowest uncertainty among 
the ones that have converged. They actually seized a very 
important effect in ill-posed problems, called semiconver-
gence, which works as follows. Call n the number of DOFs 
for a given discretization scheme. If the true solution and 
input noise have markedly distinct features with respect to 
the given DOFs (for instance, one is very smooth while the 
other is rough and oscillatory), then the solution is seem-
ingly observed to converge with increasing n to a given 
result, before starting to diverge again for much higher 
values of n. Needless to say, that convergent plateau is a 
sweet spot for the bias-variance tradeoff, and the strategy 
of choosing the least variant solution among results that 
are similarly biased is reasonably optimal (it is indeed 
quite similar to the well-established L-Curve criterion [40] 
and to the Quasi-Optimality principle [41]). Two prob-
lems arise. The first is that optimal does not mean unbi-
ased: bias is null only if the solution is exactly modeled 
by a polynomial of the chosen order, and the solution may 
have some features that are only picked by very high-order 
terms—yet are lost in the noise sensitivity associated with 
that number of DOFs. The second is that semiconvergence 

may not even show up: especially if the residual stress 
distribution is not well modeled by a low-order polyno-
mial, by increasing the maximum order one observes both 
a continuously changing solution and an ever increasing 
noise effect, without that useful “dead-zone”.

In a recent article, Brítez et al. [42] explored the use of 
nonconsecutive polynomial orders with the Power Series 
Method and proposed another heuristic to pick the best 
solution. When testing their algorithm and comparing it 
with other literature proposals, they asked what we believe 
to be the right question. If one constructs a 95% confidence 
interval, then it should have a 95% frequentist coverage, 
that is, the obtained bounds should include the true values 
95% of the times that the procedure is applied. How does 
that figure compare with the actual coverage of the inter-
vals provided by the methods? In other words, what is the 
accuracy of the given uncertainty? Results are extremely 
interesting, as none of the tested methods consistently 
achieves the right coverage for all datasets. Note that all 
tested methods include some heuristic estimation of the 
model error (namely, bias); if the same test was carried 
out on an uncertainty quantification strategy that does not 
even include this term, coverage would be shockingly low.

There is a minor statistical flaw in testing the coverage 
of confidence intervals by counting the fraction of residual 
stress values of a single solution that fall within the com-
puted point-like intervals, as done in [35, 36, 42]. In fact, 
the entries of the obtained solution are correlated in space, 
and they are more and more correlated as the regulariza-
tion level is increased. Confidence intervals come with a 
probability of including the underlying true value upon 
independent repetitions of the same bounds estimation 
procedure, something that does not hold for the intervals 
computed at different depths (being them correlated), 
while it does for a repetition of the whole experiment.

There is indeed an instructive example. Assume that the 
solution values are perfectly correlated in space, as when 
error is due to a constant shift from the true solution. In 
this case, either all or none of the confidence intervals at 
different depths include the corresponding true solution 
values. Nonetheless, upon repetition of the experiment, 
each confidence interval at a given depth will anyway 
include the corresponding true value with the desired 
probability. Clearly, this effect is not so dramatic in resid-
ual stress measurements, but in this work we will stick to 
the rigorous definition of confidence intervals coverage.

Tikhonov Regularization

Tikhonov regularization improves the ill-conditioning of 
refined discretization schemes, but, in exchange, it introduces 
a bias in the solution, whose form is anything but trivial. 
Its rigorous characterization requires some knowledge of 
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functional analysis (see [43–45]), but an intuitive discussion 
can be provided by adopting a bit of linear algebra.

The coefficient matrix A can be written in terms of its 
Singular Value Decomposition (SVD) [33] as:

where U and V are orthogonal matrices, and � is a diago-
nal matrix having the so-called singular values �i on the 
diagonal (usually arranged in descending order). The SVD 
provides a useful interpretation of how a finite-dimensional 
linear operator (namely, a matrix) acts on a vector. First, 
it finds its coordinates with respect to an orthogonal ref-
erence system V , then it amplifies the i-th component by 
the singular value �i , and finally it adjusts results through 
a rotation U.

Hansen et al. [46] showed that low i’s (namely, high |�i|
’s) are related to smoothly varying components, while high 
i’s (namely, low |�i|’s) are associated with rapidly oscillating 
ones, suggesting that the SVD of A somehow resembles a 
kind of Fourier transform in the spatial frequency domain. 
As a consequence, some terms and concepts in the following 
have been borrowed from signal processing, such as low-
pass filter and high-frequency amplifier (see [1]).

The ill-posedness of equation (1) causes the singular 
values of A to accumulate at zero [45], that is, the more 
degrees of freedom are present, the more �i → 0 for high i. 
In other words, the forward problem (from residual stresses 
to relaxed strains) is a low-pass filter with respect to the 
basis V.

A useful feature of the SVD is that it allows the least-
squares solution of As = e to be obtained in a convenient form:

where �† is the diagonal matrix whose elements are given 
by the reciprocal of each singular value (null entries are left 
at zero). Its effect is the same: it projects on U , amplifies by 
1∕�i , and rotates by V.

If for high i �i → 0 , then 1∕�i → ∞ , and that is precisely 
the curse of ill-posedness. Some components receive an 
extremely high amplification, and if errors spans those com-
ponents—which is almost always the case—noise ends up 
dominating the final result. The inverse problem is a high-
frequency amplifier with respect to the basis U.

Behind its practical implementation as a penalized least 
squares problem, Tikhonov regularization actually applies 
a filter on the terms 1∕�i [44]. Instead of amplifying by 1

�i
 , 

classical Tikhonov regularization substitutes that term 
with by 1

�i+�
 , so that as �i → 0 the maximum amplification 

factor does not grow to infinity anymore and for large 
enough �i the solution is negligibly affected by the value 
of � . The second-order Tikhonov regularization included 

(12)A = ���
T

(13)s
† ≜ arg min

s
‖As − e‖2 = ��

†
�

T
e ≜ A

†
e

in the ASTM E837-20 standard [31] works similarly, 
although in a slightly more sophisticated mathematical 
context. This operation comes at the cost of a bias: by 
filtering high-order components, both noise and true con-
tent in that zone get distorted. This bias could be charac-
terized, if some solution properties with respect to those 
components were known.

Nonetheless, a practical problem lies in the fact that U 
and V have hardly ever some physical meaning in relaxa-
tion methods. They are simply some orthogonal bases (in 
ℝ

n , unrelated with geometrical orthogonality in the real 
world of the experiment) that allow one to write A as a 
SVD decomposition. As a consequence, it is practically 
impossible to have prior knowledge on how the solution 
behaves in those bases, such as the sparsity of its represen-
tation, so the corresponding bias cannot be known.

Tikhonov regularization is frequently coupled with 
some criteria on how to optimally choose the regulariza-
tion parameter � . One of the most used strategy is the 
Morozov discrepancy principle, which is also suggested in 
the ASTM E837-20 standard [31]. Its details are covered 
in [1]; here, we should delve into the true meaning of the 
above-mentioned optimality.

A formal discussion of the Morozov discrepancy princi-
ple can be found in Chapter 7 of [44] and is way outside the 
scope of this paper, but some concepts are useful in the engi-
neering practice too. A choice strategy of a regularization 
parameter is optimal if the obtained solution is the closest 
to the true one, among all possible values of the � param-
eter. If this definition is assumed, the Morozov discrepancy 
principle is not optimal and, to our knowledge, a strategy 
that deterministically picks the optimal � parameter does not 
exist. In a statistical discrete setting, the Morozov discrep-
ancy principle is said to be convergent and order-optimal. 
Convergent means that the expected value of the root mean 
square solution error tends to zero as the degrees of freedom 
of the problem grow to infinity. Order-optimal means that 
the chosen parameter approaches the optimal one up to a 
multiplicative constant, as the degrees of freedom grow to 
infinity; strictly speaking, in the case of the Morozov cri-
terion it requires some technical assumptions that will be 
omitted here. Note that both these properties are focused 
on the asymptotic behavior with respect to increasing the 
degrees of freedom. Similar considerations hold for other 
“optimal” parameter choice strategies.

From a practical point of view, the last paragraph leads 
to two important consequences: 

1.	 When Tikhonov regularization is used, the highest 
number of measurement points and the corresponding 
most refined discretization scheme should always be 
exploited. That experimental strategy ensures that the 
regularization parameter is chosen in the best possible 
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way. It is impossible to know how much the obtained 
solution is better than another one coming from a less 
refined discretization scheme, but this ensures that the 
most favorable conditions are chosen for the method to 
work. Giving up on experimental data (such as reducing 
the number of physical drilling steps) makes no sense 
other than being a pure time-saving measure.

2.	 Because of the previous point, for a given number of degrees 
of freedom there is no mathematical result that guarantees 
that the chosen parameter is close to the optimal one, even 
in a statistical sense. Depending on the problem and on the 
properties of the true solution, some methods can systemati-
cally over- or under-regularize the solution [47]. Sometimes 
the Morozov discrepancy principle yields a regularization 
parameter that is blatantly unreasonable, and there’s noth-
ing wrong with this outcome. In practice, parameter choice 
criteria are just sound and well-grounded heuristics.

Strictly speaking, the Morozov discrepancy principle is 
agnostic to the specific regularization technique applied. For 
instance, it could be used to automatically choose also the size 
of the discretization step in the Integral Method or the maxi-
mum degree of polynomials in the Power Series Method.

Tikhonov regularization is particularly convenient 
because it allows one to easily play with its (single) 

regularization parameter and explore the bias-variance 
tradeoff without having to recompute the entire 
discretization scheme, thus avoiding a computationally 
burdensome procedure. Then, by mixing personal 
judgment and the outputs obtained by various parameter 
selection criteria, the analyst can choose a suitable 
solution. Nonetheless, a practical quantification of 
uncertainty is still an open—possibly unsolvable—
problem. When uncertainty is not that big of a concern 
(for instance, in image deblurring, when only a nice 
reconstruction is needed), the upsides of this approach 
are particularly advantageous, but when its results 
are used to make safety-critical decisions (as when 
considering the effect of residual stresses in a failure 
assessment), it should be handled with extreme care.

As a side note, recall that the beneficial mathemati-
cal properties of the Morozov discrepancy principle hold 
under the assumption of deterministically known vari-
ance of the input, which is instead a not-so-trivial piece 
of information in the real world of measurements. The 
ASTM E837-20 provides a technique that estimates the 
input variance, but the variance of the estimated variance 
itself can be a cause for concern. See Figs. 5 and 6 for a 
numerical example. The interested reader can find a sta-
tistical analysis in Appendix A.

(a) (b)

Fig. 5   Solutions obtained through Tikhonov regularization and the Morozov discrepancy principle. Since DOFs are not limited by this approach, 
the best possible solution coincides with the true one, and it would be achieved with perfect measurements. A single realization of a solution is  
also reported, together with its computed 95% confidence interval. (a) Noise level known a priori and equal to �� = 1�� . (b) Noise level esti-
mated through the procedure of ASTM E837-20 standard. Note that results are centered along a solution that is biased with respect to the true 
one, especially in areas where features vary on a small spatial scale. For example, the effect is rather pronounced at the surface. The fact that the 
noise level is not known a priori adds another layer of variability to the results, but it can have an apparently opposite effect on a single solution: 
when the noise level is overestimated, the same solution needs more regularization, and that decreases its perceived variability
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Machine Learning Applications

The development of statistics and data science provided 
residual stress engineers with a plethora of tools to tackle the 
inverse problem of relaxation methods. Neural networks have 
been employed [48, 49], though mainly for the correction 
of non-linear effects on the measurements, such as plastic-
ity. Anyway, the bias-variance tradeoff is a well-established 
concept in the context of neural networks [50], so the design 
and training of the network is generally planned accordingly.

Recently, a technique called Gaussian Process Regression 
(GPR) was employed to solve this inverse problem [51, 52]. 
A thorough analysis of its mathematical properties would 
require a whole separate paper, so the interested reader is 
referred to an impressive online article [53] and to a thor-
ough yet not too technical review [54]. Nonetheless, its basic 
principles are discussed hereafter.

In summary, Gaussian processes are the functional 
equivalent of multivariate random variables: they estab-
lish a probability distribution over possible functions. 
The functions are distributed around a mean function, 
and their point-like values are correlated in space through 
a covariance kernel. The more values that are far from 
each other are positively correlated, the more the func-
tion is expected to be smooth; in other words, a function 
can hardly show abrupt changes if each time the points 
“immediately after” are highly correlated with the current 
one. The mean function is often assumed to be identi-
cally null, while the covariance kernel is assumed to fol-
low a given mathematical law, controlled by a finite set of 

values called hyperparameters. A nice feature of GPR is 
that it provides a Bayesian framework to incorporate the 
observed measurements and obtain a posterior joint dis-
tribution of values, even outside of measurement points, 
from prior information about the Gaussian process. Then, 
one can propagate this distribution through any model of 
choice, obtaining the distributions of other quantities that 
depend on it.

When applied to residual stress measurements, a GPR 
application is straightforward: the relaxed strains (or the dis-
placements, in the case of the Contour method) are assumed 
to be modeled by a Gaussian process; given the measured 
strains, a posterior distribution over the space of relaxed 
strains is obtained, which is propagated through the inverse 
operator to find the distribution of residual stresses. Being 
Gaussian, the mean of the posterior distribution is also the 
corresponding maximum a posteriori (MAP) estimator. 
Since the covariance kernel usually enforces smoothness, a 
sample from the posterior distribution typically appears as a 
filtered version of the input strains. Here is where regulariza-
tion comes into play: highly oscillating inputs are filtered, so 
the inverse problem variance is tamed. The more the prior 
assumption of a covariance kernel incorporates smoothness 
assumptions, the more this will be reflected in the posterior 
distribution through Bayesian inference, and the problem 
will be regularized at the cost of bias—since the true solu-
tion may not be as smooth as expected.

If the input relaxed strains are actually a Gaussian process 
with that specific covariance kernel and hyperparameters, 
everything works, but, as usual, that piece of information 
cannot be available in a practical case. As a consequence, 
the procedure is carried out in two steps.

First, the hyperparameters of the assumed kernel are usu-
ally inferred from data via maximum likelihood estimation 
(MLE): the intrinsic smoothness level of data is chosen as 
the most statistically plausible given the observed measure-
ments and the measurement error, if known. This rationale is 
the same of the Morozov discrepancy principle, although the 
math is a bit more sophisticated. Since there is measurement 
noise, it is more likely that the measured input strains be a 
slightly corrupted version of smooth true data, than them 
being very accurate observations of actually rough true data.

The regression phase is consequently carried out by 
assuming that the true data is a Gaussian process with that 
covariance kernel having the estimated hyperparameters.

Like the term says, the estimation of hyperparameters is 
done on a maximum likelihood basis, that is: among all pos-
sible models, the one under which the probability of obtain-
ing the observed data is maximized (with respect to other 
models) is selected. Three concerns must be raised, as they 
actually hold for MLE in general, also when it is applied in 
other frameworks:

Fig. 6   Distribution of the ratio between the regularization parameter 
� chosen by the Morozov discrepancy principle and the optimal value 
corresponding to the minimum solution error in a least squares sense. 
The two cases of known vs. estimated noise level are reported. Note 
that the picked value of � is slightly overregularized on average, but 
prone to some cases of severe underregularization
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•	 MLE looks for the “best” model among the ones 
indexed by the hyperparameters, but it provides no 
measure of the absolute probability of it being actu-
ally the true one. Although typical covariance kernels 
are fairly general, data may depart from the implied 
assumptions—for instance, discontinuities would be 
quite an issue for many established kernels.

•	 MLE is likely to be statistically optimal in some sense, 
which means that the expected value of the results 
is probably closer to the true solution than with other 
choices of hyperparameters. However, again, optimal 
does not mean unbiased: it is the best with the given 
setup, but the bias introduced by the smoothness assump-
tions is active and affects the uncertainty quantification.

•	 MLE is a statistical estimator, not a deterministic truth, 
in the sense that the values of the hyperparameters are 
uncertain, and ill-posedness is very punishing with 
respect to that kind of uncertainty. The uncertainty of 
residual stress can be computed by assuming that the 
posterior data distribution is exact, but there are some 
less-probable-though-not-so-unlikely hyperparameters 
(corresponding to lower data smoothness) that corre-
spond to much greater variances in the residual stress 
solution; inevitably, uncertainty quantification is, in turn, 
quite uncertain.

For the sake of completeness, it is possible to avoid MLE 
and evaluate the posterior data distribution by marginalizing 
over the whole domain of hyperparameters (for instance, see 
Chapter 5 in [55]), although the operation is overly complex 
for the scope of a residual stress measurement. Anyway, that 
would leave the choice of a kernel family as the only remain-
ing bias, at the cost of a rather sizable variance.

A common argument in favor of GPR claims that by using 
a so-called universal kernel, every continuous function can 
be approximated with infinite precision by a suitable mean 
of a posterior distribution predicted by GPR (formally, the 
reproducing kernel Hilbert space of a universal kernel is 
dense in the space of continuous functions). In simple words, 
regardless of the given kernel and hyperparameters, when fed 
with sufficient data the mean of the posterior distribution pre-
dicted by GPR can converge to any given solution. However, 
this concerns just an asymptotic behavior with respect to the 
size of the dataset: actually, for a given dataset, kernels inject 
a hugely influential prior in the Bayesian inference and favor 
some solutions over others at the expense of bias. Know-
ing that with increasing data the GPR estimate would con-
verge to the truth—possibly in contrast to prior smoothness 
assumptions—is of little practical help, as convergence may 
be extremely slow [56]. Like the Morozov discrepancy prin-
ciple, mathematics just states that having the greatest amount 
of data puts us in the most favorable conditions for GPR to 
work, though we don’t know how favorable they actually are.

Anyway, it is fair to say that GPR is likely to perform 
slightly better than the Tikhonov-Morozov approach, because 
of a combination of three factors: 1) since true relaxed strains 
are the output of a low-pass filter (equation (1)), a general 
smoothness assumption is reasonable; 2) GPR employs that 
prior assumption to build a MAP estimate of relaxed strains 
that is then propagated through an unbiased model (except 
for the bias induced by the discretization scheme, which 
should be kept as refined as possible); 3) GPR estimations 
are seemingly not so affected by lack of knowledge about the 
input noise. See Fig. 7 for a numerical example.

To conclude, it is important to recall that ill-posedness 
cannot be solved with mathematical/statistical tricks; if any-
thing, maybe what is missing right now is a convenient way 
to formally incorporate the physical knowledge about the 
engineering problem into its equations, and that is where the 
authors think should be directed our efforts. The following 
section is in attempt at facing this problem.

A Constructive Proposal

Main Idea

After having analyzed the shortcomings of the available 
techniques, it is now time to apply the conclusions of Sec-
tion “Continuum Bodies and Point-Wise Values” in order to 
formulate a proposal on how relaxed strain measurements 
should be processed to obtain a residual stress distribution. 
The proposal is based on the fact that ill-posedness comes 
from the quest for point-wise stress values, while most likely 
what is requested is some integral value of residual stresses 
along a given “problem related” length. Therefore, it is sug-
gested to give up on finding point-wise residual stresses with 
their uncertainties and to directly look for properly averaged 
quantities instead.

The procedure is grounded on the existence of three char-
acteristic lengths, which depend on the particular phenom-
enon to be engineeringly faced and on the specific residual 
stress measurement: 

1.	 An averaging length l� . This is the length at which resid-
ual stresses manifest their effects, being it required for 
fatigue models of crack initiation, fracture mechanics 
approaches for crack growth, distortion analyses, stud-
ies of tribological properties, or any other application of 
choice. In absence of application-specific information, 
l� is a length at which we accept that results will be 
averaged. Everything that happens at a scale under l� is 
assumed not to affect the considered phenomenon, and 
it is deemed as not technically relevant.

2.	 A measuring step lm . This is the maximum resolution 
that can be technologically achieved by the adopted 
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relaxation technique, regardless of the variance that 
would come with that resolution. In simple terms, it is 
the minimum step of the cutting process that can be per-
formed consistently and whose effect can be reasonably 
captured by the chosen relaxed strain measuring method.

3.	 A continuum length lc . This is the length scale where the 
chosen model of continuum—under which the influence 
functions for residual stress evaluation are deducted—
starts failing at representing the local material proper-
ties. Typically, when measuring macro-stresses in a 
metallic component, considering that the models are 
based on homogeneous isotropic linear elastic materi-
als, lc is in the order of the average grain size.

If lc > l𝜎 the mathematical framework used for the elab-
oration is inadequate, as the residual stress distribution 
would be significant at a length scale that is not modeled 
by a homogeneous isotropic material. Moreover, for the 
proposed procedure to work, lm must be smaller than l� 
(ideally, one order of magnitude less).

The main result is the following. If lm is approximately 
equal to or less than lc , the procedure yields virtually exact 
confidence intervals on residual stresses averaged along 
l� . Otherwise, a technological/metrological limit of the 
process appears, which has to be reported as a result. To 
sum up, the following conditions are necessary:

When equation (14) holds, the procedure exploits the 
physical/technical knowledge that comes with lc . If eve-
rything that happens below the lc scale falls outside the 
chosen continuum model, at that length scale the solution 
cannot be biased—the corresponding true solution does 
not even exist at lower length scales. As a matter of fact, 
it is the most refined solution one can get that still satisfies 
the continuum hypothesis.

This fact is used to carry out an ill-posed inversion while 
avoiding any bias, at the cost of a likely huge variance. To 
minimize the uncertainty of the uncertainty, what can’t be 
known has to be minimized; in this case, bias is the issue. 
Once that unbiased results are obtained, their variance is 
subsequently reduced by averaging them along l�.

The trick here is that if the solution to an ill-posed prob-
lem is stripped out of uncomputable components, from 
that point onward every uncertainty can be safely propa-
gated to compute the uncertainties of derived quantities. 
Ill-posedness did not disappear: the results validity is still 
conditioned to the value (and to the existence) of lc . On the 
other hand, it is arguably one of the weakest, less restric-
tive, and most general hypotheses that can help one tame 
ill-posedness.

(14)lm ≤ lc ≪ l𝜎

(a) (b)

Fig. 7   Solutions obtained through Gaussian Process Regression applied to relaxed strain data. Since DOFs are not limited by this approach, 
the best possible solution coincides with the true one, and it would be achieved with perfect measurements. A single realization of a solution 
is  also reported, together with its computed 95% confidence interval. (a)  Noise level known a priori and equal to �� = 1�� . (b) Noise level 
estimated by MLE as an additional hyperparameter. Note that results are centered along a solution that is biased with respect to the true one, 
especially in areas where features vary on a small spatial scale. For example, the effect is rather pronounced at the surface. The fact that the noise 
level is not known a priori has a seemingly negligible effect both on the dispersion of results and on a single realization of a solution. That is  
likely due to the fact that a higher estimated noise comes with a smoother kernel but at the same time it decreases the statistical power of obser-
vations, so the overall effect is less dramatic than with Tikhonov-Morozov approaches
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Formalization

For the sake of simplicity, a one-dimensional setting is con-
sidered, such as for most relaxation methods. The case of 
contour method easily follows by extending line integrals 
to surface integrals, without significant conceptual effort.

If the averaging length l� has been chosen, an averaged 
residual stress �av at a point � such that l�

2
≤ � ≤ hmax −

l�

2
 

is defined as:

Quite astonishingly, the following proposition holds [57]:

Proposition 3  The problem of finding �av(�) from �(h) is 
well-posed.

In Appendix B, a formal proof is proposed. In other 
words, small changes in �(h) cannot give rise to arbitrarily 
high changes in �av(�) ; the uncertainty of �av(�) is bounded 
by the uncertainty of �(h) . It is worth noting that this pro-
posal is not an original mathematical approach, as it falls 
under the broader class of mollifier methods for ill-posed 
problems [57–60]. However, it is technically useful if the 
key quantity l� actually exists and it is correctly chosen. 
Being well-posed, results are brought to convergence by 
successive refinements of the discretization scheme. As 
intuition suggests, the ill-conditioning of the problem is 
controlled by the value of l� ; the greater l� is, the lower the 
result is sensitive to input errors, as noise gets filtered by 
the averaging integral in equation (15).

In other words, with respect to the original ill-posed 
problem of finding point-like values of residual stresses, l� 
acts as a meaningful regularization parameter, and it intro-
duces a bias with respect to the true solution of the original 
problem—which is actually deemed as purely theoretical. 
In fact, there is no interest anymore in the point-wise values 
of residual stresses, as the regularized (average) solution is 
itself the desired quantity, with a precise and useful physi-
cal meaning. By contrast, a truncated polynomial expan-
sion or a specific � in Tikhonov regularization do not have 
a clear physical meaning, so they are interpreted as biased 
surrogates of the true point-wise residual stresses that have 
to be integrated later, to apply a given engineering model.

Step 1 – Minimizing the Unknown

To evaluate the integral in equation (15), the values of �(z) 
must be known at a more refined length scale than l� , and 
here is where lm comes into play. In practical terms, as many 
measurement steps are performed, then �(z) can be found by 
inverting the problem through the classical Integral Method 

(15)�av(�) ≜ 1

l� �
�+

l�

2

�−
l�

2

�(z) dz

with a square coefficient matrix, without any other form of 
regularization or statistical averaging. By doing this, the 
bias-variance tradeoff gets totally unbalanced towards vari-
ance, which most likely will dominate over true information 
in the obtained solution.

Note that bias has not been strictly zeroed, since discre-
tization—no matter how refined—always includes some 
regularization. The good part is that the existence of lc 
guarantees that bias is practically null. As a matter of fact, 
it is unreasonable to think that stresses obtained under a 
continuum body assumption have meaningful content on a 
length scale where the continuum assumption itself fails. As 
argued in Section “Back to Residual Stresses”, these length 
scales are now technologically feasible (or close to) in many 
relaxation measurement techniques.

Even if one was unsure about lc , there is another argu-
ment in favor of this strategy: it is the one that involves the 
least possible amount of bias in uncertainty quantifications, 
unless additional physical knowledge is available. In other 
words, even in cases where the assumptions about lc are not 
verified exactly, it is probably the best strategy in terms of 
accuracy of the uncertainty quantification.

Step 2 – Reducing the variance

An unmanageably noisy but unbiased solution has been 
obtained; it will be called the unbiased solution in the fol-
lowing. The unbiased solution is still not a final result, as 
the residual stresses at this refined length scale are not use-
ful; instead, an averaged value on the length l� is requested 
according to equation (15).

Even if the target is always to find averaged values of residual 
stresses, it is worth noting the subtle but significant difference 
with respect to the classic Integral Method. In the latter, �(z) is 
assumed to be constant on intervals of given length. Here, an 
unbiased solution is first obtained with minimal assumptions, 
then its data points are aggregated. The great advantage lies in 
the fact that the uncertainty of the unbiased solution can safely 
be propagated through equation (15) to find the uncertainty 
of the averaged solution. See Fig. 8 for a numerical example.

As a result, equation (15) significantly reduces the vari-
ance of the averaged solution, with respect to the unbiased 
one. As the latter is likely to present many anti-correlated 
samples—ill-posedness gives rise to oscillatory solutions—it 
is important to propagate uncertainties rigorously, to exploit 
the advantages of averaging anti-correlated quantities.

If measurement errors are independent and have variance 
�2
�
 , their covariance matrix is �

e
= �2

�
I . When equation (6) is 

applied to solve the inverse problem, �
e
 is propagated to the 

covariance matrix �
s
 of the unbiased solution s:

(16)�
s
= A

−1
�
e
A

−T
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Note that �
s
 is, in general, a full matrix—that is, it is not 

diagonal like �
e
 anymore.

Equation (15) must be discretized with a suitable numerical 
integration scheme. Since the discretization scheme of �(z) is 
forced by the Integral Method solution s , basically one just 
needs to apply a rectangular rule of numerical integration to 
equation (15) by averaging groups of stress intervals together. 
For example, say that a l� = 50�m has to be obtained from a 
lm = 10�m ; then, a rolling average of 5 consecutive intervals 
is applied to the unbiased solution:

where:

Eventually, �
s
 can be propagated through equation (17), 

obtaining the final covariance matrix of sav:

Equation (19) allows one to obtain the covariance matrix 
of the averaged residual stresses from the input covariance 
matrix. Two points should be raised:

(17)sav ≜ � s

(18)� ≜ 1

5

⎡⎢⎢⎢⎣

1 1 1 1 1

1 1 1 1 1

⋱ ⋱ ⋱ ⋱ ⋱

1 1 1 1 1

⎤⎥⎥⎥⎦

(19)�av = ��
s
�

T = �A
−1

�
e
A

−T
�

T

•	 The input covariance matrix �
e
 could be unknown. This issue 

is ubiquitous in uncertainty quantifications, and an accurate 
characterization of the measurement process is a responsibil-
ity of the laboratory. The input uncertainty could be estimated 
from data, but—for instance, as shown in Appendix A—the 
estimation has an uncertainty itself. In the worst case, equa-
tion (19) explicitly gives the exact distribution of results con-
ditioned to the input distribution, and that is already a useful 
piece of information to interpret the measurements.

•	 In many practical cases, �
e
 is not the only error source. 

For example, uncertainties on measured cut depths, elastic 
constants, actual geometry, etc. also play a role and affect 
results through non-linear effects. Consequently, a Monte 
Carlo simulation method is usually employed, which yields 
correct uncertainty bounds, since no bias is introduced 
during the inversion. As the problem is now well-posed, 
there is no contraindication to using standard uncertainty 
quantification techniques. In this case, equation (19) only 
evaluates the output uncertainty that is caused by strain/dis-
placement uncertainties, which in fact are the main limiting 
factor due to the ill-posedness of the problem.

Presenting the Results

The bias-variance tradeoff can produce some remarkable 
spurious phenomena when it comes to presenting the resid-
ual stress results.

(a) (b)

Fig. 8   (a) Solutions obtained through the proposed procedure. A l� = 100 μm is assumed and clearly reported. The problem is linear and well-
posed. The mean of the solutions coincides with the averaged true solution (which is also achieved by ideal measurements). The domain appears 
shrunk by the averaging process, but the first sample of each solution is actually the average of the first 100�m from the surface. Since nothing 
has been assumed concerning smoothness, solutions are quite rough; in return, their confidence intervals are exact. (b) Coverage of 95% confi-
dence intervals over repetitions of the experiment, compared among the proposed method, Tikhonov-Morozov, and GPR. Only the first consist-
ently achieves a 95% coverage, as it is theoretically guaranteed to do so. This is possible due to the fact that a physically meaningful averaged 
solution is being estimated, not the point-wise true solution. Other strategies fail in areas that are more prone to the effects of bias. The true solu-
tion is reported out-of-scale in the background, for reference
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Since the solution uncertainty seems to be low with high 
regularization levels—even though in that case only the vari-
ance is low—the user is often tempted to favor overregular-
ized solutions as they seems more presentable and more 
accurate. That is why often a polynomial series expansion 
looks more convenient, as it achieves good results with just 
a few DOFs.

Say that a round-robin test is conducted, where several lab-
oratories are asked to evaluate residual stresses in a specimen 
(for instance, see two notable recent works [61, 62]). Even if 
their measurement equipment and operators’ skills are com-
parable, an overregularized solution reported by one of the 
labs is inevitably presented as more accurate. That solution 
is smoother and apparently has smaller confidence intervals.

As discussed in [1], ill-posedness produces an even more 
deceptive effect. Assume that all laboratories diligently apply 
the same parameter selection criterion such as the Morozov 
discrepancy principle but, as usual, some laboratories have 
less accurate measuring instruments. To compensate for 
higher noise, the “optimal” solution picked by the selection 
criterion must undergo a higher level of regularization—at 
the cost of higher biases. Here is the paradox: the ones with 
worse input data will report smoother results, by simply fol-
lowing the “statistically right” way of processing data.

Those effects are quite confusing for an analyst who 
has to interpret the results and use them in an engineering 
application. Hence, we advocate for a way of presenting the 
results that allows for an intuitive and rational comparison 
of the results.

Through the proposed method, it all comes down to 
clearly disclose the value of the averaging length l� and 
to consider results that do not share that value as non-
comparable quantities. As a matter of fact:

•	 The problem of finding �av(�) from �(h) is well-posed 
(Proposition 3), so there is no bias-variance tradeoff that 
can spoil the uncertainty quantification process. The 
results are convergent with the discretization scheme; as 
long as the latter is sufficiently refined, results do not 
depend on it.

•	 How refined? That is where lc becomes effective. By dis-
closing lm and lc (or, possibly, some related and measur-
able physical quantity such as the average grain size), 
one can find whether the results uncertainty can be safely 
considered bias-free or not. When not verified, this fact 
might lead to a slight underestimation of the total uncer-
tainty. Actually, if compared with the severe uncertainty 
underestimation that comes with classical methods, in 
most practical cases, results will be satisfactory even 
when lm > lc , as long as lm is sufficiently refined to evalu-
ate equation (15).

•	 Sometimes, a given measurement process would not be 
accurate enough to find �av(�) with an acceptable sig-

nal-to-noise ratio. In those cases, l� can be increased to 
reduce the solution variance, but this operation will yield 
another physical quantity, whose results and uncertain-
ties should not be compared with residual stresses aver-
aged over smaller lengths. The technological challenge 
becomes achieving the same l� with higher accuracy or a 
smaller l� with the same accuracy.

•	 The value of l� becomes a convenient way for the spatial 
resolution to be driven by performance requirements and 
not by the measurement itself or by the sensibility of the 
residual stress engineer. In an ideal case, one has a given 
strength criterion in mind and asks for a residual stress 
measurement that is coherent with it.

Conclusion

This paper is a development of the discussion introduced 
in [1] about some counterintuitive mathematical properties 
of residual stress measurements with relaxation methods, 
mainly stemming from ill-posedness. The previous work was 
concerned with how results are obtained through regulariza-
tion and shed light on the bias-variance tradeoff, whereas 
this paper is focused on the corresponding quantification 
of uncertainties.

The inherent limits of the existing methods used to quan-
tify the uncertainties have been explored. In particular, it is 
shown that most common strategies only quantify the sen-
sitivity of results to input uncertainties, that is, the relation 
between variances of input and output distributions. Few 
notable exceptions attempted at taking bias into account, 
by referring to it as “model error” or “regularization error”.

To foster more reliable uncertainty quantifications in 
residual stress evaluations, a different approach to the elabo-
ration of measurements was proposed. After having shown 
that achieving point-wise values of residual stresses is ques-
tionable and not useful, it was suggested to switch to average 
residual stresses over a specified length. That averaging length 
may be chosen on the basis of the specific application (such as 
the critical distance in fatigue failure criteria) or it can be arbi-
trarily agreed among laboratories involved in a round robin 
of residual stress measurements. It was demonstrated that the 
problem of finding average residual stresses is well-posed, 
hence immune to the bias-variance tradeoff and to most of 
the counterintuitive problems that come with ill-posedness.

It is hoped that this paper will raise awareness on the risks 
of carrying out uncertainty quantifications in ill-posed frame-
works, and that the proposed strategy will stand the test of the 
residual stress community. As ill-posedness is actually ubiqui-
tous—from simple numerical differentiations to complicated 
non-linear inverse problems—similar considerations are likely 
to hold in many other problems in the field of experimental 
mechanics, which will hopefully be studied soon.
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Appendix A: The Morozov Discrepancy 
Principle in ASTM E837‑20

In its finite-dimensional numerical implementation, the Morozov 
discrepancy principle assumes that the Euclidean distance 
between the measured relaxed strains vector and the ideal one is 
known, at least in a statistical sense. If the independent variance 
of each measurement sample is known a priori (for example from 
field experience or an instrument certificate) and is the only error 
source, the expected squared discrepancy is easy to calculate.

When the measurement error is not known at all, the 
mathematical literature provided ill-posed problems with 
regularization parameter selection criteria that are tailored to 
function even in the absence of such information, including 
Generalized Cross-Validation (GCV) [63], the L-Curve cri-
terion [40], Iterative Predictive Risk Optimization (I-PRO) 
[47] or the Quasi-Optimality principle [41].

Schajer and Prime [13, 64] took a different approach, by 
complementing the method with a statistical estimation of 
the measurement error, performed directly on the measured 
strain data. This procedure is currently included in the ASTM 
E837-20 [31] hole-drilling standard and is analyzed in the 
following paragraphs, because of its significance to relaxa-
tion methods.

The relaxed strain measurements are assumed to vary 
smoothly with the hole depth h, so that a second-order Taylor 
series expansion produces negligible errors at every point. For 
now, it is also assumed that the p depth steps hi are uniform 
with interval Δh . Moreover, the ideal strain distribution �(h) 
is assumed to be perturbed at every sample by additive, zero-
mean Gaussian noise N(0, �2

�
) having an unknown variance 

�2
�
 . At a given hole depth hi , the Taylor series of the measured 

strain distribution �m(hi) can be expanded as:

Terms having order three or higher are denoted with O(Δh3) . 
In order to neglect them, it is assumed that the ideal strain 
distribution is sufficiently smooth with respect to the depth 
increments scheme. Equivalently, a parabola is assumed 
to describe four consecutive ideal samples with negligible 
error. The fit error on the measured samples �m(hi) will only 
be attributed to the statistical error N(0, �2

�
) . The effective-

ness of the procedure is conditioned on this assumption. 

(A.1)

�m(hi) = �(hi) +N(0, �2
�
) + O(Δh3)

�m(hi+1) = �(hi) + Δh ��(hi) +
Δh2

2
���(hi)

+N(0, �2
�
) + O(Δh3)

�m(hi+2) = �(hi) + 2Δh ��(hi) + 2Δh2���(hi)

+N(0, �2
�
) + O(Δh3)

�m(hi+3) = �(hi) + 3Δh ��(hi) +
9Δh2

2
���(hi)

+N(0, �2
�
) + O(Δh3)

Equation (A.1) can be linearly combined to simplify terms 
which depend on �(h) and its derivatives:

Since the left-hand side in equation (A.2) behaves as a ran-
dom variable with a Gaussian distribution, that same evalu-
ation can be repeated along the entire relaxed strain vector 
by increasing i from 1 to p − 3 . Hence, p − 3 realizations of 
that random variable can be drawn. Exploiting the proper-
ties of a �2 distribution, an unbiased estimator of �2

�
 can be 

built. By denoting the expected value with its usual symbol 
�(⋅) , it follows:

since �(�2(n)) = n . The left-hand side of equation (A.3) is 
an unbiased estimator of �2

�
 . If the hole steps are not uni-

form, Schajer [13] provided an analogous set of coefficients 
to apply in equation (A.2), to cancel out Taylor expansion 
terms and to obtain the random component as a result. The 
procedure follows similarly.

An important remark on the estimator in equation (A.2) is 
that its variance is, in turn, not null and often not negligible. 
It can be shown that:

since Var(�2(n)) = 2n . Note that for, say, p = 100 measure-
ments, the standard deviation of this estimation is about 15% 
of the expected value; moreover, it increases with decreasing 
p. Recall that an inaccurate variance input in the Morozov 
discrepancy principle adds another layer of uncertainty to 
the parameter choice. If a Monte Carlo method is used to 
explore the solution variance, an uncertain input variance 
will be given as input to an operator whose regularization 
level depends on the input variance itself, so the physical 
significance of the output variance is, again, highly question-
able (and bias is yet to be added to the overall uncertainty). 
As argued in [1], this discussion also points out that a high 
number of measurement samples is always beneficial, as it 
improves the sharpness of the input noise estimation.

Note that the p − 3 realizations are not strictly independ-
ent, because they share some measurement samples. Con-
sequently, the assumption of a �2 distribution is question-
able, though in many practical cases the associated error is 

(A.2)

�m(hi) − 3�m(hi+1) + 3�m(hi+2) − �m(hi+3)

≜ �(hi) = N
(
0,
(
12 + 32 + 32 + 12

)
�2
�

)
+ O(Δh3)

≈ N(0, 20�2
�
)

(A.3)�

(
p−3∑
i=1

�(hi)
2

20(p − 3)

)
=

�2
�

p − 3
�
(
�2(p − 3)

)
= �2

�

(A.4)

Var

(
p−3∑
i=1

�(hi)
2

20(p − 3)

)
=

=

(
�2
�

p − 3

)2

Var
(
�2(p − 3)

)
=

2�4
�

p − 3
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negligible compared to the estimation variance. A detailed 
mathematical analysis can be found in [65]; this procedure is 
a particular case of a more general class of a posteriori noise 
estimation algorithms.

Appendix B: Well‑Posedness  
of the Proposed Strategy

A proof of well-posedness of the proposed mollifier method 
involves some concepts of functional analysis, but it is 
reported for the sake of rigor and completeness.

Equation (1) is a Volterra integral equation of the first 
kind, with kernel A(h, z) defined on a triangular domain 
0 ≤ z ≤ h ≤ hmax . With physical arguments, the kernel 
A(h, z) can be easily shown to be bounded on its domain. 
It defines an integral operator K ∶ L2(0, hmax) → L2(0, hmax) 
that takes an element �(z) of the functional space of residual 
stresses and generates the corresponding element �(h) of the 
relaxed strains function space.

Its adjoint operator satisfies:

An averaging operator Θ ∶ L
2(0, h

max
) → L

2(l�∕2, hmax
− l�∕2)  

is defined by choosing a suitable mollifier function 
�(� , z) ∶ [l�∕2, hmax − l�∕2] × [0, hmax] → ℝ and writing:

For Θ to be actually an averaging operator, it must hold that:

The classical version of the proof assumes that for 
each �  , it is: �(� , z) ∈ R(K∗) . In that case, for each 
� ∈ [l�∕2, hmax − l�∕2] there exists a member �(h, �) of 
L2(0, hmax) such that:

By substituting equation (A.8) into equation (A.6), one 
obtains:

(A.5)(K∗f )(z) = ∫
hmax

z

A(h, z) f (h) dh

(A.6)(Θ�)(�) ≜ �
hmax

0

�(� , z) �(z) dz

(A.7)∫
hmax

0

�(� , z) dz = 1 ∀z ∈ [l�∕2, hmax − l�∕2]

(A.8)�(� , z) = (K∗�)(z) = ∫
hmax

z

A(h, z) �(h, �) dh

(A.9)
(Θ�)(�) = ∫

hmax

0

(
∫

hmax

z

A(h, z) �(h, �) dh

)
�(z) dz

= ∫
hmax

0 ∫
hmax

z

A(h, z) �(h, �) �(z) dh dz

Due to Fubini’s theorem, the order of integration can be 
switched over the triangular domain, obtaining:

where the same result could have been obtained by exploit-
ing the properties of the adjoint operator.

S i n c e  b y  h y p o t h e s i s  �(h, �) ∈ L2(0, hmax) 
f o r  e v e r y  � ∈ [l�∕2, hmax − l�∕2]   , 
B ∶ L2(0, hmax) → L2(l�∕2, hmax − l�∕2) is a Hilbert-Schmidt 
integral operator; in particular, it is bounded and continu-
ous, therefore the problem of finding (B�)(�) from �(h) is 
well-posed.

Equation (15) specifies that the chosen mollifier �(� , z) 
is a sliding rectangle function (referred to with the symbol 
Π ), so that:

Unfortunately, for every � ∈ (l�∕2, hmax − l�∕2) the mollifier 
Π
(

z−�

l�

)
 is discontinuous at z = � ± l�∕2 , so it cannot belong 

to the range of the adjoint operator (K∗f )(z) . On the other 
hand, R(K∗) = N(K)⟂ = L2(0, hmax) , since K has a trivial 
nullspace; this classical result can be found, for instance, in 
Theorem 1.4.1 of [66]. Strictly speaking, the latter requires 
that A(h, h) ≠ 0 on 0 ≤ h ≤ hmax . As a matter of fact, the 
maximum depth hmax is specifically limited in real-world 
applications in order to avoid a zone where a depth incre-
ment would produce a negligible strain regardless of the 
residual stresses therein (for instance, see [67]), so the condi-
tion is generally fulfilled.

Since Π
(

z−�

l�

)
∈ R(K∗) ⧵ R(K∗) , for each � there exists a 

sequence of elements �k(� , z) ∈ R(K∗) that converges to 
Π
(

z−�

l�

)
 . It can be easily constructed as follows. Being the ker-

nel A(h, z) continuous on its domain for obvious physical rea-
sons, the corresponding integral operator (defined in equation 
(1)) is compact, so it admits a singular value expansion 
(�i, ui(h), vi(z)) . Its singular values �i are countably infinite and 
accumulate at 0; when arranged in decreasing order, 
limi→∞ �i = 0 . This fact is the central source of ill-posedness. 
As done in the main text, note that singular values are indicated 

(A.10)

(Θ�)(�) = �
hmax

0 �
h

0

A(h, z) �(h, �) �(z) dh dz

= �
hmax

0

�(h, �)

(
�

h

0

A(h, z) �(z) dz

)
dh

= �
hmax

0

�(h, �) �(h) dh ≜ (B�)(�)

(A.11)

�av(z) = Θ(�) = ∫
hmax

0

Π

(
z − �

l�

)
�(�) d�

=
1

l� ∫
z+

l�

2

z−
l�

2

�(�) d�
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with the symbol �i rather than the more common si , to avoid 
confusion with discretized stress components.

Being compact by Schauder’s theorem [68], the adjoint 
K∗ also admits a singular value expansion (�i, vi(z), ui(h)) ; 
note the inverted position of ui(h) and vi(z).

Now, for each � define:

For k → ∞ we have that �k(� , z) → Π
(

z−�

l�

)
 , as equation 

(A.12) becomes a decomposition of Π
(

z−�

l�

)
 along the ortho-

normal system defined by vi(z).
Each �k(� , z) has a unique preimage under K∗ for every � , 

which can be obtained as:

In turn, each �k(h, �) defines—as in the previous case—an 
averaging operator Θk such that:

Clearly, Θk → Θ as k → ∞ , which is a compact operator, 
hence bounded and continuous. Nonetheless, continuity with 
respect to �(h) is yet to be proven.

As shown by Lamm in [69], since A(h, h) ≠ 0 on 
0 ≤ h ≤ hmax the operator defined by equation (1) is one-
smoothing, thus �i ∼ i−1 as i → ∞ (see for example [70] or 
the simpler discussion in the appendices of [71]). 
Although—to our best knowledge—general results are not 
available, 

⟨
Π
(

z−�

l�

)
, vi(z)

⟩
 can as well be easily shown to 

asymptotically decay as i−1 when i → ∞ , by explicit numeri-
cal computation of its terms. Some additional arguments 
show that the contrary is very unlikely.

Due to Parseval’s identity, 
⟨
Π
(

z−�

l�

)
, vi(z)

⟩
 must asymptoti-

cally behave as i−� with 𝛼 > 1∕2 , since Π
(

z−�

l�

)
 is in L2(0, hmax) . 

As shown by Hansen et al. in [46], the terms vi(z) of a compact 

(A.12)�k(� , z) ≜
k∑

i=1

⟨
Π

(
z − �

l�

)
, vi(z)

⟩
vi(z)

(A.13)�k(h, �) =

k∑
i=1

⟨
Π
(

z−�

l�

)
, vi(z)

⟩

�i
ui(h)

(A.14)

(Θk�)(�) = ∫
hmax

0

�k(� , z) �(z) dz

= ∫
hmax

0

�
∫

hmax

z

A(h, z) �k(h, �) dh

�
�(z) dz

= ∫
hmax

0

�k(h, �) �(h) dh

= ∫
hmax

0

k�
i=1

�
Π
�

z−�

l�

�
, vi(z)

�

�i
ui(h) �(h) dh

=

k�
i=1

�
Π
�

z−�

l�

�
, vi(z)

�

�i
⟨�(h), ui(h)⟩

operator behave very similarly to the Fourier series functions in 
L2(0, hmax) . On the other hand, having defined � =

l�

hmax

 , a rec-
tangle function has a well-known Fourier series expansion:

Then, its Fourier coefficients are ≲ n−1 . Eventually, ⟨
Π
(

z−�

l�

)
, vi(z)

⟩
∼ i−1 is a rather weak condition. As a mat-

ter of fact, it can be numerically shown that it is true for all 
the typical operators K involved in relaxation methods.

Coming back to equation (A.14), this means that, as k → ∞ , 
for each value of � we have that:

Consequently, in L2 norms:

Therefore, Θ◦K† ∶ R(K) ⧵ R(K) → L2(l�∕2, hmax − l�∕2) is 
bounded and continuous, so it can be continuously extended 
to R(K) = L2(0, hmax) , proving the well-posedness of the pro-
posed scheme.

Equation (A.14) effectively provides an explicit way of 
evaluating Θ◦K† as a series expansion without having to 
obtain �(z) as an intermediate result, since K† is only defined 
on R(K) ⧵ R(K) . However, in a discrete practical setting this 
problem does not arise at all, since discretization of K† yields 
a continuous operator defined on the whole finite-dimensional 
strains domain, so Θ◦K† can be evaluated in two passages, as 
done in the main text.

Note that the choice of Π
(
z − �

l�

)
 was arbitrary, and other 

mollifiers (for instance, see [59]) could be picked for this prob-
lem—some of them would not require this second part of the 
proof, due to their smoothness. Nonetheless, a rectangle func-
tion was chosen because of its simplicity, as it represents a 
plain unweighted average along a given distance.
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